Size: 6850
Comment:
|
Size: 6851
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 106: | Line 106: |
set the order of px, py, pz on the OAO set. For example, | set the order of px, py, pz on the OAO set. For example: |
Line 116: | Line 116: |
set the order of px, py, pz on the MINBAS set and AOBAS needs not to set this increment. For example, | set the order of px, py, pz on the MINBAS set and AOBAS needs not to set this increment. For example: |
Line 120: | Line 120: |
2 ! this means that there are two p orbital for each p component, such as 2pz, 3pz and 2px, 3px and 2py, 3py in order | 2 ! this means that there are two p orbital for each p component, such as 2pz, 3pz and 2px, 3px and 2py, 3py in order. |
expandmo
Contents
Module expandmo is used to expand molecular orbital from a small basis set into a large basis set and construct automated MCSCF active space by Atomic Valence Active Space (AVAS) based on target atomic valence orbitals. This module can be used to generate initial guess orbital of a large basis set calculation from the converged orbital of a small basis set calculation. Also, the expanded orbital can be used in dual-basis calculation approaches. AVAS is proposed by Garnet Kin-Lic Chan et al.(JCTC, 13, 4063-4078, 2017.)
General keywords
Overlap
Overlap is used to expand molecular orbital from a small basis set into a large basis set.
MINBAS
set valence AO such as five 3d atomic orbitals as target atomic orbitals. example file is test086.inp
minbas
5
1Co|3D-2
1Co|3D-1
1Co|3D0
1Co|3D1
1Co|3D2
AOBAS
set valence AO such as five 3d atomic orbitals as target atomic orbitals. example file is test086.inp 10 - 14 are the number of target 3d OAO.
aobas
5
10 11 12 13 14
AOPXYZ
rotate each OAO 2p orbital so that the new Pz is vertical to molecular plan. For example, there are two Pi fragments the first one has comprised 4 pz (which is the number of first p orbitals) AOs of 3 12 21 30, and the second one has 2 AOs of 41 52.
Notice that the AO index of each atom is the first p orbital of each subshell and all the p orbitals of this subshell are rotated.
aopxyz
2 4 ! first number = 2 fragments, second number = AO number of the largest fragment.
4 ! AO number of the first fragment
3 12 21 30 ! AO index of the first fragment
2 ! AO number of the second fragment
41 52 ! AO index of the second fragment
MINPXYZ
rotate each MINBAS Pi planar fragment so that the new Pz is vertical to molecular plan.
Notice that the AO symbol of each atom is the first p orbital of each subshell and all the p orbitals of this subshell are rotated.
minpxyz
1 6
6
1C|2P-1
2C|2P-1
3C|2P-1
4C|2P-1
6C|2P-1
8C|2P-1
SETPXYZ
set the order of px, py, pz on the OAO set. For example:
setpxyz
z x y ! this means the first p orbital is pz and then px and py in order. Default is z y x for AOBAS and y z x for MINBAS.
INCPXYZ
set the order of px, py, pz on the MINBAS set and AOBAS needs not to set this increment. For example:
incpxyz
2 ! this means that there are two p orbital for each p component, such as 2pz, 3pz and 2px, 3px and 2py, 3py in order.
- ! default is 1.
OAO
form all OAOs of the molecular system. For example:
$expandmo
oao
$end
MINAO
form all orthonormal MINBAS as OAO of the molecular system. For example:
$expandmo
minao
$end
AVAS
Atomic Valence Active Space (AVAS) is used to automated construction MCSCF active space by set atomic valence orbitals.
OMO
Use SL=L(lammda)^2 or SVD to assign active CMOs or LMOs
SVD
Use SVD to assign active CMOs or LMOs if .true., or use SL=L(lammda)^2.
FOCK
Contract Fock matrix to valence OAO and diagonalize Fock(OAO,OAO) to obtain valence CMO or LMO (VCMO or VLMO) and automated selection of active space.
OCCAO
Set valence OAO occupied alpha and Beta number. For example:
occao
5 3
ROHF
Consider ROHF Fock matrix for open-shell system, or UHF Fock matrix is used.
Expert keywords
Socc
set threshold to cut small overlap between MOs and target atomic orbitals for occupied active orbitals by AVAS. Default : 0.1
For example:
Socc 0.1
Svir
set threshold to cut small overlap between MOs and target atomic orbitals for virtual active orbitals by AVAS. Default : 0.1
For example:
Svir 0.1
Focc
set threshold to cut small elements of overlap B matrix between MOs and target AOs for occupied active orbitals by OMO and Fock. Default : 0.3
Fvir
set threshold to cut small elements of overlap B matrix between MOs and target AOs for virtual active orbitals by OMO and Fock. Default : 0.3
Depend Files
Filename |
Description |
Format |
task.chkfil1 |
Check file of the small basis set calculation. |
Binary |
task.chkfil2 |
Check file of the large basis set calculation. |
Binary |
INPORB |
MO coefficients file of small basis set calculation. |
Fomatted |
task.exporb |
Expanded MO coefficients. Save in BDF_WORKDIR |
Formatted |
Examples
- Here, we would calculate CH2 molecule by a small basis set CC-PVDZ. Then the converged orbital will be expanded to aug-CC-PVDZ and used as the initial orbital for SCF calculation. The input file "ch2.inp" looks like
# First we perform a small basis set calculation by using CC-PVDZ. $COMPASS Title CH2 Molecule test run, cc-pvdz Basis cc-pvdz Geometry C 0.000000 0.00000 0.31399 H 0.000000 -1.65723 -0.94197 H 0.000000 1.65723 -0.94197 End geometry UNIT Bohr Check $END $XUANYUAN $END $SCF RHF Occupied 3 0 1 0 $END #Change the name of check file. %mv $BDF_WORKDIR/ch2.chkfil $BDF_WORKDIR/ch2.chkfil1 #Copy SCF converged orbital to work directory inporb. %mv $BDF_WORKDIR/ch2.scforb $BDF_WORKDIR/ch2.inporb # Then we init a large basis set calculation by using aug-CC-PVDZ $COMPASS Title CH2 Molecule test run, aug-cc-pvdz Basis aug-cc-pvdz Geometry C 0.000000 0.00000 0.31399 H 0.000000 -1.65723 -0.94197 H 0.000000 1.65723 -0.94197 End geometry UNIT Bohr Check $END # Change name of check file for large basis set. %mv $BDF_WORKDIR/ch2.chkfil $BDF_WORKDIR/test001_1.chkfil2 # Now we expand orbital. $expandmo $end # Change name of check file for large basis set. %mv $BDF_WORKDIR/ch2.chkfil2 $BDF_WORKDIR/ch2.chkfil # Copy expanded orbital to work directory scforb as initial guess orbital. %mv $BDF_WORKDIR/ch2.exporb $BDF_WORKDIR/ch2.scforb $xuanyuan $end # Read expanded orbital as initial guess orbital. $scf RHF Occupied 3 0 1 0 Guess Read $end