welcome: please sign in

Upload page content

You can upload content for the page named below. If you change the page name, you can also upload content for another page. If the page name is empty, we derive the page name from the file name.

File to load page content from
Page name
Comment
What is the Admin password?

location: TD-DFT with SOC

TD-DFT with SOC: basics

TD-DFT based state interaction with SOC. For details, see

Zhendong Li, Bingbing Suo, Yong Zhang, Yunlong Xiao, and Wenjian Liu, “Combining spin-adapted open-shell TD-DFT with spin-orbit coupling”, Mol. Phys. 111, 3741 (2013).

Breif description of the flowchart

SOC计算的输入文件中以$section name ... $end符号为划分分为6段:

$compass 为基组和坐标控制(如果要计算其他化合物,选用其他基组,可修改这一段);

$xuanyuan 为积分控制,基本不需要改动,除非需要使用cam-b3lyp这段要加入两行:RS和0.33d0,控制计算新的积分;

$scf为计算方法控制,可选用不同泛函;

$tddft isf=0 ... 这一段(isf=0)表示计算singlet

$tddft isf=1 ... 计算triplet

$tddft isoc=2 ...根据前面两个计算的结果来计算soc state interaction,imatsoc为控制打印旋轨耦合矩阵元,格式如下:

        IMATSOC
        n
        fileA symA stateA fileB symB stateB
        fileA' symA' stateA' fileB' symB' stateB'
        ...
        ...

其中,IMATSOC下参数说明如下:

1. "n" - 代表要打印"几个旋轨耦合矩阵元<A|hso|B>",接着后面(fileA symA stateA fileB symB stateB等)为要打印矩阵元两个态的描述,共n行。

2. 每一行"fileA symA stateA fileB symB stateB"代表一个矩阵元<A|hso|B>,每个态由(file,sym,state)3个量表示。

3. 整数file - 表示前面第几个tddft计算的文件。

4. 整数sym - 表示该计算中第几个不可约表示,这取决于分子的对称性。可以从“SCF段”输出的occupation出查看不可约表示顺序。

5. 整数state - 表示该不可约表示里的第几个态,这取决于前面"TD-DFT段"计算出的激发态。

特殊说明:

1. 计算必须按照isf=0,isf=1的顺序进行;

2. 基态用(0,0,0)表示。

例子:

输入文件中"0,0,0,2,1,1"表示基态(000)和file2即triplet,sym=1的第一个态(即211对应1T1,因为此时对称性为C1)之间的旋轨耦合矩阵元。

Some common questions about SOC

Example: Print SOC mat and Perform SOC diagonalization

Input:

$COMPASS
Title
 ir1
Basis
 IRCOMPLEX
Geometry
 Ir      -0.0117154745  0.02136826         -0.1871622466
 C       -1.590674169   0.7736105591       0.850482009
 C       -4.0103593084  1.6631710744       2.0881698872
 C       -1.587030516   1.6064254297       1.9846531563
 C       -2.8754743453  0.4162567381       0.3762778017
 C       -4.0684588604  0.8406678872       0.9653728357
 C       -2.7652566303  2.0433988261       2.5945234724
 H       -0.633533598   1.9127046365       2.4024890794
 H       -5.031807216   0.5389051931       0.5644872718
 H       -2.7118027246  2.6839610147       3.4712663621
 H       -4.9285536031  2.0014173162       2.5588819363
 C       1.4053272337   1.0109349589       0.8613594531
 C       3.3836289249   2.6234305864       2.1354680771
 C       2.0771460677   0.5800974992       2.0211645669
 C       1.7631262545   2.2970140474       0.3585152663
 C       2.7411852479   3.0844966855       0.9939992732
 C       3.044957901    1.3650101996       2.6469305081
 H       1.8305785647   -0.3881315485      2.4444240781
 H       3.0042061929   4.0630294704       0.6010854425
 H       3.5407187868   0.9959817385       3.5420383099
 H       4.1379887938   3.2338708527       2.6233130653
 C       0.1111675725   -1.7119838156      0.8795182027
 C       0.5294631611   -4.2465845213      2.136544371
 C       1.0417183334   -2.6652412426      0.4024936912
 C       -0.6004107662  -2.1019903883      2.028797446
 C       -0.4006210626  -3.3384592866      2.6477946425
 C       1.2608503358   -3.9079720636      1.0002003463
 H       -1.3244348019  -1.413608967       2.4531282601
 H       -0.9731808696  -3.5946754614      3.5357463104
 H       1.9890357565   -4.6057356294      0.596753782
 H       0.6876544671   -5.2085686031      2.6147222734
 N       -1.7055918832  -0.7893527004      -1.3058124454
 C       -1.9722242221  -1.5767164653      -2.3518797181
 C       -3.3612772292  -1.7339951323      -2.5010242321
 C       -3.9194938069  -0.9920736156      -1.4729787184
 N       -2.8999954385  -0.434228237       -0.7703095731
 N       1.5150714233   -1.0583114657      -1.2825131804
 C       2.3138081406   -0.9142123699      -2.3433358371
 C       3.1082799478   -2.0614459074      -2.5127910698
 C       2.7399679653   -2.9098550697      -1.4816601802
 N       1.779892419    -2.2802990117      -0.7566347846
 H       -1.1601491745  -1.9907288667      -2.9313421992
 H       3.089224611    -3.8952971699      -1.2184247348
 H       3.8501674705   -2.2464169166      -3.2743336863
 H       -3.8863865729  -2.3105313491      -3.2470045506
 H       -4.9492341453  -0.8290099882      -1.1983109053
 H       2.2814545468   -0.0015798294      -2.9198044757
 C       0.5167706643   4.2876200227       -2.6332627231
 C       -0.4153270812  3.3663568698       -3.1195481682
 C       -0.5686406908  2.1688169354       -2.4341135463
 N       0.1409383672   1.8631654694       -1.3352631181
 C       1.05542065     2.7471949823       -0.8428699526
 C       1.2493629941   3.9769776219       -1.4963443658
 H       0.6676353447   5.2385692731       -3.1359337322
 H       -1.011339893   3.5685529446       -4.0026032407
 H       -1.276466123   1.413706092        -2.7596936709
 H       1.9731120675   4.6831024371       -1.1074561222
End geometry
GROUP
C(1)
Skeleton
$END

$XUANYUAN
scalar
heff
3
soint
hsoc
2
Direct
Schwarz
$END

$SCF
RKS
DFT functional
 B3lyp
$END

$TDDFT
IMETHOD
 1
ISF
 0
ITDA
 0
IDIAG
 1
istore
 1
iexit
10
AOKXC
MemJKOP
 2048
crit_e
1.d-4
$END

$TDDFT
IMETHOD
 1
ISF
 1
ITDA
 0
IDIAG
 1
istore
 2
iexit
10
AOKXC
MemJKOP
 2048
crit_e
1.d-4
$END

$TDDFT
isoc
2
nfiles
2
ifgs
1
imatsoc
1
0 0 0 2 1 1
$END

NOTE: If isoc=3, no diagonalization of Hsoc will be performed.

Output:

SOC matrix elements

  Print selected matrix elements of [Hsoc]

  <  0  0  0 |Hso|  2  1  1 >
  mi/mj        ReHso(au)           cm^-1               ImHso(au)           cm^-1
   1  1        0.0003219734       70.6650036601        0.0009582030      210.3012602778
   1  2        0.0000000000        0.0000000000       -0.0006544171     -143.6279497862
   1  3        0.0003219734       70.6650036601       -0.0009582030     -210.3012602778

这里计算<S0|Hso|T1>分别给出其实部ReHso和虚部ImHso。因为S0只有一个分量,mi为1。T1(spin S=1)有3个分量(Ms=-1,0,1), mj编号这3个分量。

Warning: 在不同程序结果对比时需要注意:这里给出的时所谓spherical tensor,而不是cartesian tensor,即T1是T_{-1},T_{0},T_{1},不是Tx,Ty,Tz,两者之间存在酉变换。

SOC-SI results

 *** List of SOC-SI results ***

 Totol No. of States:    41

  No.      ExEnergies      f              Dominant Excitations         Esf        dE      Eex(eV)     (cm^-1)

    1      -0.0066 eV   0.0000    99.8%  Spin: |Gs,1>    0-th    A    0.0000   -0.0066    0.0000         0.00
    2       2.5694 eV   0.0000    44.1%  Spin: |S+,2>    1-th    A    2.6425   -0.0731    2.5760     20776.65
    3       2.5727 eV   0.0000    32.8%  Spin: |S+,3>    1-th    A    2.6425   -0.0698    2.5793     20803.69
    4       2.5908 eV   0.0000    31.8%  Spin: |S+,1>    1-th    A    2.6425   -0.0517    2.5974     20949.77
    5       2.7010 eV   0.0000    31.1%  Spin: |So,1>    1-th    A    2.9592   -0.2583    2.7076     21837.87
    6       2.8740 eV   0.0000    19.9%  Spin: |S+,1>    2-th    A    2.9081   -0.0340    2.8806     23233.61
    7       2.8794 eV   0.0000    27.0%  Spin: |S+,2>    2-th    A    2.9081   -0.0287    2.8859     23276.69
    8       2.9589 eV   0.0000    22.8%  Spin: |S+,1>    3-th    A    2.9849   -0.0261    2.9655     23917.99
    9       3.0395 eV   0.0000    26.0%  Spin: |S+,2>    2-th    A    2.9081    0.1314    3.0461     24568.13
   10       3.0631 eV   0.0000    38.7%  Spin: |S+,2>    3-th    A    2.9849    0.0782    3.0697     24758.84
   11       3.0881 eV   0.0000    52.9%  Spin: |So,1>    2-th    A    3.0330    0.0551    3.0947     24960.28
   12       3.1239 eV   0.0000    30.7%  Spin: |So,1>    1-th    A    2.9592    0.1647    3.1305     25249.42
   13       3.1328 eV   0.0000    21.9%  Spin: |S+,2>    5-th    A    3.1710   -0.0382    3.1394     25320.98
   14       3.1334 eV   0.0000    20.5%  Spin: |S+,3>    4-th    A    3.1640   -0.0305    3.1400     25325.94
   15       3.1455 eV   0.0000    33.3%  Spin: |S+,2>    4-th    A    3.1640   -0.0185    3.1521     25423.24
   16       3.1489 eV   0.0000    24.5%  Spin: |S+,2>    5-th    A    3.1710   -0.0221    3.1555     25450.64
   17       3.1546 eV   0.0000    17.0%  Spin: |S+,3>    4-th    A    3.1640   -0.0094    3.1612     25496.52
   18       3.1580 eV   0.0000    34.2%  Spin: |S+,3>    5-th    A    3.1710   -0.0130    3.1646     25524.02
   19       3.1866 eV   0.0000    17.4%  Spin: |S+,2>    7-th    A    3.2865   -0.1000    3.1932     25754.60
   20       3.2140 eV   0.0000    28.2%  Spin: |S+,3>    6-th    A    3.2065    0.0074    3.2206     25975.68
   21       3.2174 eV   0.0000    48.4%  Spin: |S+,2>    6-th    A    3.2065    0.0109    3.2240     26003.33
   22       3.2435 eV   0.0000    38.0%  Spin: |So,1>    3-th    A    3.2231    0.0204    3.2501     26213.63
   23       3.2627 eV   0.0000    20.7%  Spin: |S+,3>    6-th    A    3.2065    0.0562    3.2693     26368.83
   24       3.2725 eV   0.0000    30.0%  Spin: |S+,2>    7-th    A    3.2865   -0.0140    3.2791     26447.54
   25       3.3035 eV   0.0000    45.4%  Spin: |So,1>    3-th    A    3.2231    0.0804    3.3101     26697.85
   26       3.3651 eV   0.0000    23.9%  Spin: |So,1>    4-th    A    3.5132   -0.1481    3.3717     27194.63
   27       3.3945 eV   0.0000    31.5%  Spin: |S+,1>    8-th    A    3.4260   -0.0315    3.4011     27431.99
   28       3.4070 eV   0.0000    31.1%  Spin: |S+,1>    9-th    A    3.4454   -0.0384    3.4136     27532.74
   29       3.4308 eV   0.0000    31.7%  Spin: |S+,3>    8-th    A    3.4260    0.0047    3.4374     27724.20
   30       3.4465 eV   0.0000    19.7%  Spin: |S+,2>    8-th    A    3.4260    0.0204    3.4531     27850.76
   31       3.4518 eV   0.0000    55.5%  Spin: |S+,2>    8-th    A    3.4260    0.0257    3.4583     27893.46
   32       3.4658 eV   0.0000    43.7%  Spin: |S+,2>    9-th    A    3.4454    0.0204    3.4724     28006.99
   33       3.4764 eV   0.0000    24.6%  Spin: |S+,1>   10-th    A    3.4870   -0.0106    3.4830     28092.46
   34       3.5252 eV   0.0000    68.4%  Spin: |S+,2>   10-th    A    3.4870    0.0382    3.5318     28485.50
   35       3.6092 eV   0.0000    49.3%  Spin: |So,1>    4-th    A    3.5132    0.0960    3.6158     29163.42
   36       3.6402 eV   0.0000    60.5%  Spin: |So,1>    6-th    A    3.5920    0.0482    3.6468     29413.12
   37       3.6508 eV   0.0000    48.8%  Spin: |So,1>    5-th    A    3.5648    0.0859    3.6574     29498.52
   38       3.6609 eV   0.0000    47.4%  Spin: |So,1>    7-th    A    3.6206    0.0403    3.6675     29580.42
   39       3.6684 eV   0.0000    43.5%  Spin: |So,1>    8-th    A    3.6288    0.0396    3.6750     29640.60
   40       3.7293 eV   0.0000    83.7%  Spin: |So,1>    9-th    A    3.6898    0.0395    3.7359     30131.95
   41       3.7898 eV   0.0000    90.1%  Spin: |So,1>   10-th    A    3.7487    0.0411    3.7964     30620.26

 [tddft_soc_final]

这里,ExEnergies列出考虑SOC后的激发能。Esf为原始不考虑SOC时的激发能。

激发态表示用"Spin: |S,M> n-th sym"来表示,自旋|Gs,1>,空间对称性为sym的第n个态。例如,|Gs,1>代表基态,|So,1>表示总自旋和基态相同的激发态,|S+,2>表示总自旋加1的激发态。M为自旋投影的第几个分量(in total 2S+1)。

Warning: f-振子强度并没有计算,如需计算需要指定imatrso来计算transition dipole moment !

Example: Calculate (transition) dipole moments with or without including SOC

BASIC Input:

$COMPASS
Title
 ch2s
Basis
 aug-cc-pvtz
Geometry
C       0.000000    0.000000   -1.039839
S       0.000000    0.000000    0.593284
H       0.000000    0.932612   -1.626759
H       0.000000   -0.932612   -1.626759
End geometry
Skeleton
$END

$xuanyuan
scalar
heff
3
soint
hsoc
2
direct
schwarz
$end

$scf
RHF
charge
0
spin
1
THRESHCONV
1.d-12 1.d-10
OPTSCR
1
$end

$tddft
imethod
1
isf
0
idiag
1
iexit
10
itda
1
istore
1
$end

$tddft
imethod
1
isf
1
itda
1
idiag
1
iexit
10
istore
2
$end

Without SOC

If we only want to calculate (transition) dipole moments between spin-free states, a new section could be added as

$tddft
nfiles
2
ifgs
1
imatrsf
-1
# selected printing will be implemented in future 
#3
#0 0 0 1 2 1
#1 1 1 1 2 1
#2 2 1 2 2 1
$end

Output:

  >>> Print (transition) dipole moments : 

  Ground state dipole moment (in Debye) 
          (ifile,irep,istate|state2)   <I|X|J>     <I|Y|J>     <I|Z|J>
  DipPair=    0 0   0     0 0   0      -0.0000      0.0000      2.2128

  Ground state to Excited state transition dipole moments 
          (ifile,irep,istate|state2)   <I|X|J>     <I|Y|J>     <I|Z|J>
  DipPair=    0 0   0     1 1   1       0.0000     -0.0000     -3.6211
  DipPair=    0 0   0     1 1   2       0.0000     -0.0000      0.9935
  DipPair=    0 0   0     1 1   3      -0.0000     -0.0000      0.6184

...

  APPROXIMATE excited state to excited state (transition) dipole moments 
          (ifile,irep,istate|state2)   <I|X|J>     <I|Y|J>     <I|Z|J>
  ifile =                     1
  DipPair=    1 1   1     1 1   1      -0.0000     -0.0000      1.3886
  DipPair=    1 1   2     1 1   1      -0.0000      0.0000     -0.0598
  DipPair=    1 1   3     1 1   1      -0.0000      0.0000      0.2098
...

With SOC

However, if the (transition) dipole moments between SOC-coupled states, the SOC-SI calculation must be performed first and then use the imatrso keywords:

$tddft
isoc
2
nprt
10
nfiles
2
ifgs
1
#imatsoc
#1
#0 0 0 1 2 1
imatrso
6
1 1
1 2
1 3
1 4
1 5
1 6
$end

Output:

 [tddft_soc_matrso]: Print selected matrix elements of [dpl] 

  autodebye=   2.5417649999999998     

  No.  ( I , J )   |rij|^2       E_J-E_I         fosc          rate   
 ---------------------------------------------------------------------
   1     1    1   0.757E+00      -0.0004     -0.667E-05    -0.374E-04
   Details of transition dipole moment with SOC (in a.u.):
                   <I|X|J>       <I|Y|J>       <I|Z|J>        (also in debye) 
          Real=   0.136E-16    -0.512E-17     0.870E+00     0.0000  -0.0000   2.2121
          Imag=  -0.410E-35    -0.117E-34    -0.299E-34    -0.0000  -0.0000  -0.0000
          Norm=   0.136E-16     0.512E-17     0.870E+00


  No.  ( I , J )   |rij|^2       E_J-E_I         fosc          rate   
 ---------------------------------------------------------------------
   2     1    2   0.166E-05       1.9361      0.788E-07     0.128E+02
   Details of transition dipole moment with SOC (in a.u.):
                   <I|X|J>       <I|Y|J>       <I|Z|J>        (also in debye) 
          Real=  -0.127E-02     0.776E-14     0.476E-17    -0.0032   0.0000   0.0000
          Imag=   0.229E-03     0.273E-13     0.310E-16     0.0006   0.0000   0.0000
          Norm=   0.129E-02     0.284E-13     0.313E-16

...

Note that for the diagonal term (<1|r|1>), we have the dipole moment of state 1, while the off-diagonal term (<1|r|2>) gives the transition dipole moments.