Ground-state geometric derivatives
Our example is H2O:
$COMPASS Title h2o Basis 6-31G Geometry O .0000000000 -.2249058930 .0000000000 H 1.4523499293 .8996235720 .0000000000 H -1.4523499293 .8996235720 .0000000000 End geometry units bohr skeleton $END $xuanyuan direct schwarz $end $scf RKS DFT BHHLYP charge 0 spin 1 THRESHCONV 1.d-12 1.d-12 guess hcore grid medium $end
Ground-state gradients
Input:
$resp GEOM norder 1 method 1 $end
Output:
Grid in resp - Medium (75,302)
Gradient contribution from Tot-egrad 1 0.000000000000001 0.000000000000014 0.020661555871328 2 0.000222118661238 0.000000000000001 -0.010328989065672 3 -0.000222118661237 -0.000000000000001 -0.010328989065672 Sum of gradient contribution from Tot-egrad 0.000000000000002 0.000000000000015 0.000003577739983
Grid in resp - Fine (88,590)
Gradient contribution from Tot-egrad 1 0.000000000000001 -0.000000000000000 0.020661280611129 2 0.000222098322782 0.000000000000001 -0.010330740060356 3 -0.000222098322781 -0.000000000000001 -0.010330740060356 Sum of gradient contribution from Tot-egrad 0.000000000000001 0.000000000000000 -0.000000199509583
Grid in resp - Ultra Fine (100,1202)
Gradient contribution from Tot-egrad 1 0.000000000000000 0.000000000000133 0.020661446561909 2 0.000222140335598 0.000000000000001 -0.010330700335443 3 -0.000222140335597 -0.000000000000001 -0.010330700335443 Sum of gradient contribution from Tot-egrad 0.000000000000001 0.000000000000133 0.000000045891023
It is seen that by using larger number of grids, the translation error (sum of gradients for all atoms) is reduced (3*10-6, 2*10-7, 5*10-8).
Ground-state hessians
Not implemented yet.