welcome: please sign in

Revision 5 as of 2014-09-27 06:30:19

Clear message
location: Excited-state properties based on analytic derivatives

Excited-state properties based on analytic derivatives

Using the same input for H2O with additional TDDFT input:

$tddft
imethod
1
nexit
0 0 0 1 
itda
0
idiag
1
istore
1
iprt
3
lefteig
crit_vec
1.d-8
crit_e
1.d-14
$end

Excited state dipole moment

Input:

$resp
GEOM
norder
0
method
2
nfiles
1
$end

Output:

  Diff dipole (xyz in au) :
  <hT>=      0.000000000000      0.000000000000     -1.348478984647
  <hZ>=      0.000000000000     -0.000000000000      0.305146495122
  <hP>=      0.000000000000      0.000000000000     -1.043332489525

  Diff dipole (xyz in debye) :
  <hT>=      0.000000000000      0.000000000000     -3.427516686411
  <hZ>=      0.000000000000     -0.000000000000      0.775610681174
  <hP>=      0.000000000000      0.000000000000     -2.651906005236

  GS and EX Dipole moments (Debye) : -1 is attached.
   x =       0.000000000000     -0.000000000000
   y =       0.000000000000      0.000000000000
   z =      -2.538155784773      0.113750220464

where <hP>=<hT>+<hZ> gives the difference dipole moment, <hT> represents the contribution from the difference density matrix, <hZ> represents the contribution from the response part.

Excited state gradient

Input:

$resp
GEOM
norder
1
method
2 
nfiles
1 
$end

Output for the gradients of 1B2 state of H2O: