Excited-state properties based on analytic derivatives
Using the same input for H2O with additional TDDFT input:
$tddft imethod 1 nexit 0 0 0 1 itda 0 idiag 1 istore 1 iprt 3 lefteig crit_vec 1.d-8 crit_e 1.d-14 $end
Excited state dipole moment
Input:
$resp GEOM norder 0 method 2 nfiles 1 $end
Output:
Diff dipole (xyz in au) : <hT>= 0.000000000000 0.000000000000 -1.348478984647 <hZ>= 0.000000000000 -0.000000000000 0.305146495122 <hP>= 0.000000000000 0.000000000000 -1.043332489525 Diff dipole (xyz in debye) : <hT>= 0.000000000000 0.000000000000 -3.427516686411 <hZ>= 0.000000000000 -0.000000000000 0.775610681174 <hP>= 0.000000000000 0.000000000000 -2.651906005236 GS and EX Dipole moments (Debye) : -1 is attached. x = 0.000000000000 -0.000000000000 y = 0.000000000000 0.000000000000 z = -2.538155784773 0.113750220464
where <hP>=<hT>+<hZ> gives the difference dipole moment, <hT> represents the contribution from the difference density matrix, <hZ> represents the contribution from the response part.
Excited state gradient
Input:
$resp GEOM norder 1 method 2 nfiles 1 $end
Output for the gradients of 1B2 state of H2O: