welcome: please sign in
location: Diff for "Examples: first-order nonadiabatic couplings"
Differences between revisions 21 and 22
Revision 21 as of 2014-09-28 02:12:27
Size: 3358
Editor: 162
Comment:
Revision 22 as of 2014-09-28 02:20:25
Size: 5288
Editor: 162
Comment:
Deletions are marked like this. Additions are marked like this.
Line 91: Line 91:

To use the finite difference approach, '''nosym''' must be used to avoid the rotation of molecules.
Currently, only C(1) group is permitted.
For the example considered above, it turns out that the first two ^1^A2 excited states are the 1st and 4th excited
states. However, if only use '''iexit=4''' with iterative diagonalization, the initialization based on orbital energy difference (IPA)
will miss the 2rd excited states, as its IPA is very large, viz.,
{{{
  No. Pair ExSym ExEnergies f D<S^2> Dominant Excitations IPA Ova En-E1
    1 A 2 A 4.3504 eV 0.0000 0.0000 88.9% CV(0): A( 8 )-> A( 9 ) 15.558 0.476 0.0000
    2 A 3 A 9.3394 eV 0.0008 0.0000 92.4% CV(0): A( 6 )-> A( 9 ) 21.045 0.546 4.9890
    3 A 4 A 9.3480 eV 0.1782 0.0000 85.8% CV(0): A( 7 )-> A( 9 ) 17.814 0.822 4.9975
    4 A 5 A 11.3372 eV 0.0000 0.0000 92.3% CV(0): A( 5 )-> A( 9 ) 22.197 0.535 6.9868
    5 A 6 A 11.6654 eV 0.3266 0.0000 92.9% CV(0): A( 8 )-> A( 10 ) 18.527 0.461 7.3150
}}}
Thus, '''iexit=5''' is used in the following inputs:

{{{

$COMPASS
Title
 nh3
Basis
 6-31GP
Geometry
 C 0.00000000 -0.00000000 -0.53964037
 O 0.00000000 0.00000000 0.68767663
 H 0.00000000 0.93940400 -1.13178537
 H 0.00000000 -0.93940400 -1.13178537
End geometry
skeleton
group
c(1)
nosym
$END

$xuanyuan
direct
schwarz
$end

$scf
RHF
charge
0
spin
1
THRESHCONV
1.d-10 1.d-8
OPTSCR
1
$end

$tddft
imethod
1
isf
0
iexit
5
itda
0
idiag
1
istore
1
crit_e
1.d-10
crit_vec
1.d-8
lefteig
DirectGrid
$end

$resp
iprt
1
QUAD
FNAC
double
pairs
1
1 1 1 1 1 4
norder
1
method
2
nfiles
1
ignore
0
noresp
$end

}}}

First-order nonadiabatic couplings

The calculations of first-order nonadiabatic couplings (NAC) between ground and excited-states (<0|Dx|Sn>), and those between the excited-states (<Sm|Dx|Sn> or <Tm|Dx|Tn>) at the TD-DFT/TDA level can be achieved by generalizing the standard linear and quadratic response theories, for details, see

Zhendong Li and Wenjian Liu, "First-order nonadiabatic coupling matrix elements between excited states: A Lagrangian formulation at the CIS, RPA, TD-HF, and TD-DFT levels", J. Chem. Phys. 141, 014110 (2014).

For convenience, however, in the input they are both specified by the QUAD keyword with single and double, respectively. Either analytic derivative or finite difference approach can be used. The latter is only allowed for C(1) symmetry, and for molecules without orbital degeneracy!

Analytic derivative approach

NAC between two 1A2 states of CH2O:

$COMPASS
Title
 nh3
Basis
 6-31GP
Geometry
 C                  0.00000000   -0.00000000   -0.53964037
 O                  0.00000000    0.00000000    0.68767663
 H                  0.00000000    0.93940400   -1.13178537
 H                  0.00000000   -0.93940400   -1.13178537
End geometry
skeleton
$END

$xuanyuan
direct
schwarz
$end

$scf
RHF
charge
0
spin
1
THRESHCONV
1.d-10 1.d-8
OPTSCR
1
$end

$tddft
imethod
1
isf
0
nexit
0 2 0 0
itda
0
idiag
1
istore
1
crit_e
1.d-10
crit_vec
1.d-8
lefteig
DirectGrid
$end

$resp
iprt
1
QUAD
FNAC
double
pairs
1
1 2 1 1 2 2
norder
1
method
2
nfiles
1
ignore
0
noresp
$end

Finite difference approach

To use the finite difference approach, nosym must be used to avoid the rotation of molecules. Currently, only C(1) group is permitted. For the example considered above, it turns out that the first two 1A2 excited states are the 1st and 4th excited states. However, if only use iexit=4 with iterative diagonalization, the initialization based on orbital energy difference (IPA) will miss the 2rd excited states, as its IPA is very large, viz.,

  No. Pair   ExSym   ExEnergies      f     D<S^2>          Dominant Excitations             IPA   Ova     En-E1
    1   A    2   A    4.3504 eV   0.0000   0.0000  88.9%  CV(0):   A(   8 )->   A(   9 )  15.558 0.476    0.0000
    2   A    3   A    9.3394 eV   0.0008   0.0000  92.4%  CV(0):   A(   6 )->   A(   9 )  21.045 0.546    4.9890
    3   A    4   A    9.3480 eV   0.1782   0.0000  85.8%  CV(0):   A(   7 )->   A(   9 )  17.814 0.822    4.9975
    4   A    5   A   11.3372 eV   0.0000   0.0000  92.3%  CV(0):   A(   5 )->   A(   9 )  22.197 0.535    6.9868
    5   A    6   A   11.6654 eV   0.3266   0.0000  92.9%  CV(0):   A(   8 )->   A(  10 )  18.527 0.461    7.3150

Thus, iexit=5 is used in the following inputs:

$COMPASS
Title
 nh3
Basis
 6-31GP
Geometry
 C                  0.00000000   -0.00000000   -0.53964037
 O                  0.00000000    0.00000000    0.68767663
 H                  0.00000000    0.93940400   -1.13178537
 H                  0.00000000   -0.93940400   -1.13178537
End geometry
skeleton
group
c(1)
nosym
$END

$xuanyuan
direct
schwarz
$end

$scf
RHF
charge
0
spin
1
THRESHCONV
1.d-10 1.d-8
OPTSCR
1
$end

$tddft
imethod
1
isf
0
iexit
5
itda
0
idiag
1
istore
1
crit_e
1.d-10
crit_vec
1.d-8
lefteig
DirectGrid
$end

$resp
iprt
1
QUAD
FNAC
double
pairs
1
1 1 1 1 1 4
norder
1
method
2
nfiles
1
ignore
0
noresp
$end

$COMPASS
Title
 nh3
Basis
 sto-3g
Geometry
 C                  0.00000000   -1.20809142   -1.14173975
 C                  0.00000000   -1.20797607    0.25342015
 C                  0.00000000    0.00000000    0.95085852
 C                 -0.00000000    1.20797607    0.25342015
 C                 -0.00000000    1.20809142   -1.14173975
 C                  0.00000000    0.00000000   -1.83922155
 H                  0.00000000   -2.16045397   -1.69142002
 H                  0.00000000   -2.16044427    0.80300713
 H                 -0.00000000    2.16044427    0.80300713
 H                 -0.00000000    2.16045397   -1.69142002
 H                  0.00000000    0.00000000   -2.93882555
 F                  0.00000000    0.00000000    2.30085848
End geometry
skeleton
group
c(1)
nosym
$END

$xuanyuan
direct
schwarz
$end

$scf
RHF
charge
0
spin
1
THRESHCONV
1.d-10 1.d-8
OPTSCR
1
iaufbau
0
$end

$tddft
imethod
1
isf
0
iexit
2
itda
1
idiag
1
istore
1
crit_e
1.d-10
crit_vec
1.d-8
lefteig
AOKXC
DirectGrid
$end

$resp
iprt
1
QUAD
FNAC
single
states
1
1 1 2
double
pairs
1
1 1 1 1 1 2
norder
1
method
2
nfiles
1
FDIF
step
0.001
ignore
1
noresp
$end

To use finite-difference, a script fdiff.py should be used as

./fbdiff.py run.sh input.inp > log

After the calculation is done, an output file input.out will present in the current directory. The log file saves the information during the calculations.

Note: If FDIF is omitted, the analytic calculation will be carried out by simply using the run.sh script.

Examples: first-order nonadiabatic couplings (last edited 2018-12-11 13:55:27 by lzd)