welcome: please sign in
location: Diff for "Examples: first-order nonadiabatic couplings"
Differences between revisions 11 and 12
Revision 11 as of 2014-09-27 07:37:06
Size: 2589
Editor: 162
Comment:
Revision 12 as of 2014-09-27 07:55:55
Size: 2591
Editor: 162
Comment:
Deletions are marked like this. Additions are marked like this.
Line 11: Line 11:
== Finite-difference approach ==
== Finite difference approach ==

First-order nonadiabatic couplings

The calculations of first-order nonadiabatic couplings between ground and excited-states (<0|Dx|Sn>), and those between the excited-states (<Sm|Dx|Sn> or <Tm|Dx|Tn>) at the TD-DFT/TDA level can be achieved by generalizing the standard linear and quadratic response theories, for details, see

Zhendong Li and Wenjian Liu, "First-order nonadiabatic coupling matrix elements between excited states: A Lagrangian formulation at the CIS, RPA, TD-HF, and TD-DFT levels", J. Chem. Phys. 141, 014110 (2014).

For convenience, however, in the input they are both specified by the QUAD keyword with single and double, respectively. Either analytic derivative or finite difference approach can be used. The latter is only allowed for C(1) symmetry, and for molecules without orbital degeneracy!

Analytic derivative approach

Finite difference approach

$COMPASS
Title
 nh3
Basis
 sto-3g
Geometry
 C                  0.00000000   -1.20809142   -1.14173975
 C                  0.00000000   -1.20797607    0.25342015
 C                  0.00000000    0.00000000    0.95085852
 C                 -0.00000000    1.20797607    0.25342015
 C                 -0.00000000    1.20809142   -1.14173975
 C                  0.00000000    0.00000000   -1.83922155
 H                  0.00000000   -2.16045397   -1.69142002
 H                  0.00000000   -2.16044427    0.80300713
 H                 -0.00000000    2.16044427    0.80300713
 H                 -0.00000000    2.16045397   -1.69142002
 H                  0.00000000    0.00000000   -2.93882555
 F                  0.00000000    0.00000000    2.30085848
End geometry
skeleton
group
c(1)
nosym
$END

$xuanyuan
direct
schwarz
$end

$scf
RHF
charge
0
spin
1
THRESHCONV
1.d-10 1.d-8
OPTSCR
1
iaufbau
0
$end

$tddft
imethod
1
isf
0
iexit
2
itda
1
idiag
1
istore
1
crit_e
1.d-10
crit_vec
1.d-8
lefteig
AOKXC
DirectGrid
$end

$resp
iprt
1
QUAD
FNAC
single
states
1
1 1 2
double
pairs
1
1 1 1 1 1 2
norder
1
method
2
nfiles
1
FDIF
step
0.001
ignore
1
noresp
$end

To use finite-difference, a script fdiff.py should be used as

./fbdiff.py run.sh input.inp > log

After the calculation is done, an output file input.out will present in the current directory. The log file saves the information during the calculations.

Note: If FDIF is omitted, the analytic calculation will be carried out by simply using the run.sh script.

Examples: first-order nonadiabatic couplings (last edited 2018-12-11 13:55:27 by lzd)